联系我们
  • 联系电话

    0731-88876089

  • 联系人

    李栋、杜瑜敏

  • 邮箱

    csuzyxh@sohu.com

  • 邮编

    410083

  • 学院地址

    湖南省长沙市中南大学资源循环研究院

突破性设计策略的研发 推动固体电池发展

来源:本站  发布时间:2021年01月19日 作者:

作为新一代电池,全固态电池具有比现有锂电池更高的稳定性和容量。这类电池采用不可燃固体正极和电解质,在高温或外部冲击环境下可大幅降低爆炸或起火风险,有助于提高能量密度(是锂电池的两倍),或将改变电动汽车和储能设备市场的发展趋势。然而,固体电解质的离子导电性低、界面电阻高,且易于降解,这会影响电池的性能和寿命,并使其商业化应用受限。



据报道,某研究团队研究出突破性材料设计策略,可以克服固体电解质和正极之间界面电阻高的问题。

两种不同物质的重合界面上会出现独特的物理现象。在物质本体内,邻近的原子形成稳定的键。与之不同的是,由于一侧没有相同物质的相邻原子,界面上的原子很可能形成不同的原子排列。全固态电池具有固体电极-固体电解质界面,在电池中会出现扰乱原子排列并限制电荷转移的现象,从而增加电阻并加速降解。为了解决这一问题,目前正在研究在正极和电解质表面涂覆适当材料或插入中间层。然而,这将进一步增加成本,并降低电池的整体活性和能量密度。



为了解决这些问题,研究团队首先系统性确定直接影响固体界面的材料晶体结构。利用外延薄膜技术,沿基层晶体形成方向生成薄膜,在不同条件下,获得具有不同裸露晶面的正极薄膜。在不考虑颗粒大小和接触面积等因素的情况下,详细分析裸露晶面对固体电解质与正极材料之间界面的影响。

结果显示,裸露晶面的紧密包覆结构,可以阻止正极材料中的过渡金属泄漏至电解液中,从而提高全固态电池的稳定性。此外,当晶体界面与电子运动方向平行时,离子和电子可以不受阻碍地沿晶体运动,从而减小电阻,提高容量输出。



研究人员表示:“通过增加晶面密度及调整晶体之间的界面方向,可以改善正极材料,确保高性能和稳定性。本项研究探讨全固态电池的降解机理。我们计划在此基础上,解决固体电解质和固体正极界面的不稳定性问题,改进离子-电荷交换特性,加速开发全固态电池材料。”




文章标签:
分享: