联系我们
  • 联系电话

    0731-88876089

  • 联系人

    李栋、杜瑜敏

  • 邮箱

    csuzyxh@sohu.com

  • 邮编

    410083

  • 学院地址

    湖南省长沙市中南大学资源循环研究院

AI即时预测材料结构与特性扩展相关科研空间

来源:  发布时间:2022年12月04日 作者:

记者获悉,国外某团队开发了一种人工智能(AI)算法,可几乎即时地预测任何材料(无论是现有材料还是新材料)的结构和动态特性。该算法被称为M3GNet,用于开发Matterverse.ai数据库,该数据库包含超过3100万种尚未合成的材料,其特性由机器学习算法预测。数据库还促进了具有卓越性能的新材料的发现,研究人员可使用其来寻找更安全、能量密度更高的可充电锂离子电池电极和电解质。


2269B


为了构建材料的等价物,研究团队将图形神经网络与多体交互相结合,构建了一种深度学习架构,可在元素周期表的所有元素中通用、高精度地工作。为了训练他们的模型,该团队使用了过去十年在材料项目中收集的巨大的材料能量、力和应力数据库。M3GNet原子间势(IAP)则可预测任何原子集合中的能量和力。最终Matterverse.ai是通过对无机晶体结构数据库中的5000多个结构原型进行组合元素替换而生成的,然后使用M3GNet IAP获得平衡晶体结构,用于属性预测。


9237A


新成果在材料动态模拟和性能预测方面也有广泛的应用。例如,人们通常对锂离子在电池电极或电解质中的扩散速度很感兴趣。扩散越快,电池充电或放电的速度就越快。研究证明,M3GNet IAP可用于准确预测材料的锂电导率。研究人员坚信M3GNet架构是一种变革性工具,可极大地扩展对新材料化学和结构的探索能力。


4651


通过Matterverse.ai人类从某种程度上变身造物主,能在材料无数排列组合中挑出他们心仪的那些,就算还没有真正把材料造出来,但已经能够了解它们的特性,甚至尝试加以改造,让它们在不同领域大显身手。而这一切,也将在科学和技术上产生巨大作用,助推新设备、新工具的诞生,改变人类的生活。




文章标签:
分享: