联系我们
  • 联系电话

    0731-88876089

  • 联系人

    李栋、杜瑜敏

  • 邮箱

    csuzyxh@sohu.com

  • 邮编

    410083

  • 学院地址

    湖南省长沙市中南大学资源循环研究院

电解制氢耦合高值化学品制备研究获进展

来源:  发布时间:2025年03月27日 作者:

氢气既是能源载体又是工业气体。氢气根据其制备过程的排放情况,分为灰氢、蓝氢和绿氢,分别表示化石燃料制氢、工业副产氢和可再生能源制氢。

当前,电解水制氢技术是重要的绿氢制备方法,但因阳极析氧反应动力学过程缓慢、过电位高等问题,使得整体能量转换效率偏低,制氢成本较高。这一技术瓶颈制约了绿氢的大规模商业化应用。因此,亟需开发新型高效催化剂、优化反应体系或探索替代性制氢技术。

 

290FD

 

 某研团队致力于电解制氢催化剂的研究。面向电解制氢阳极析氧反应能垒高、动力学缓慢和阳极产物价值低的难题,该研究采用甘油电氧化反应替代析氧反应,降低电解制氢的能耗同时能够获得高附加值化学品。

针对甘油氧化反应路径多、产物复杂且选择性低等挑战,研究基于理性材料设计发展了高熵催化剂(PtCuCoNiMn)。该催化剂可实现在0.2 A cm-2下高选择性制备甘油酸。研究还搭建了一套小型电解槽,通过间歇电解实现了0.2 A高电流密度下催化剂的稳定运行。原位谱学表征发现,Pt为催化位点,其甘油氧化为甘油酸的反应路径是端羟基的活化与H解离→中间体甘油醛的生成→甘油醛至甘油酸的电氧化转化。密度泛函理论计算发现,甘油醛脱水反应的难易程度是决定是否产生乳酸的关键环节。Cu的引入在热力学上抑制了副产物乳酸的生成,在动力学上促进了目标产物甘油酸的生成,而Co、Ni、Mn可调节催化表面氧化态以保护Pt活性位点。

 9572

 

 

该研究发现通过构建高熵表面来定制催化剂/电解质界面的催化位点是电化学催化的有效策略之一。

 

 

 

文章标签:
分享: